\qquad Hour \qquad

Lenses Lab

Purpose:
In the lab you will be looking at the relationships between hi and ho as well as between p and $\mathrm{q} . A$ converging lens works best for this lab because the image can be projected and measured (real image).

Review before you begin:

In the lab, we will be using a meterstick in the window as our object and the cardstock will capture our projected image.

\#1 object holder

Have everyone in your group answer these and check them off to get a magnifying glass.

1) Define and LABEL ON THE DRAWING all of the variables.
\qquad - distance from meterstick in window to the lens
\qquad - distance from lens to where the image is projected on the card
\qquad - height of the meterstick in the window
\qquad - height of the image on the card
2) What is the difference between a real and a virtual image?
3) Do a quick sketch of what the ray diagrams will look like in this lab. Your object will be past the focal point of a converging lens. Look at your notes if you need help.

4) What type of image will you get in this lab? \qquad How do you know?
\qquad Hour \qquad

Part 1:

KEEP UNITS IN CM!
Keep p and q the same but change ho (height of meterstick above your hand)

\mathbf{p} (constant)	$\underset{\text { keep it constant!) }}{\mathrm{q}_{\text {(mease thi but }}}$	h_{o} (This will change)	$\mathbf{h}_{\mathbf{i}}$ (think-is this pos. or neg?)	0 (pos or neg?) Calculate using hi / ho
410	11	20	-0.7	
410	11	40	-1.4	
410	11	60	-2	
410	11	80	-2.6	

Part 2:

Keep the ho constant (height of meterstick above hand) but change the distance to the window (p)

p		h_{o} (constant)	h_{i} (posorneg?)	$\mathrm{m}_{\text {Caculate or using }}^{\text {hi h } / \text { ho }}$
100	13	50	-1.5	
200	13	50	-1.6	
400	13	50	-1.7	
500	13	50	-1.6	

Analysis:

1) Should your magnification be positive or negative? Why? Fix it in your chart if needed.
2) What was your average magnification for part 1 ? \qquad part 2? \qquad
3) Calculate the focal length for your lens. Use p and q from a row in Part 2 that seems to be accurate.
4) Why is q positive?
5) Draw a scaled ray diagram when $\mathrm{p}=100 \mathrm{~cm}$ in Part 2. Use the focal length calculated in \#3.

Measure \mathbf{q} and $\mathbf{h}_{\mathbf{i}}$ from your drawing! Scale $1 \mathrm{~cm}=20 \mathrm{~cm}$.

