

Purpose:

In the lab you will be looking at the relationships between hi and ho as well as between p and q. A <u>converging lens</u> works best for this lab because the image can be **projected** and measured (real image).

Review before you begin:

In the lab, we will be using a meterstick in the window as our object and the cardstock will capture our projected image.

Have everyone in your group answer these and check them off to get a magnifying glass.

1) Define <u>and</u> LABEL ON THE DRAWING all of the variables.

_____- distance from meterstick in window to the lens

_____- distance from lens to where the image is projected on the card

_____ – height of the meterstick in the window

_____- height of the image on the card

2) What is the difference between a real and a virtual image?

3) Do a quick sketch of what the ray diagrams will look like in this lab. Your object will be past the focal point of a **converging lens**. Look at your notes if you need help.

4) What type of image will you get in this lab? _____ How do you know?

Hour _____

Name ____

<u>Part </u>1:

KEEP UNITS IN CM!

Keep p and q the same but change ho (height of meterstick above your hand)

p (constant)	q (measure this but keep it constant!)	h _o (This will change)	h _i (think- is this pos. or neg?)	m (pos or neg?) Calculate using hi / ho
410	11	20	-0.7	
410	11	40	-1.4	
410	11	60	-2	
410	11	80	-2.6	

Part 2:

Keep the ho constant (height of meterstick above hand) but change the distance to the window (p)

р	q (measure this but keep it constant!)	h _o (constant)	h_i (pos or neg?)	m (pos or neg?) Calculate using hi / ho
100	13	50	-1.5	
200	13	50	-1.6	
400	13	50	-1.7	
500	13	50	-1.6	

Analysis:

- 1) Should your magnification be positive or negative? Why? Fix it in your chart if needed.
- 2) What was your average magnification for part 1? _____ part 2? _____
- 3) Calculate the focal length for your lens. Use p and q from a row in Part 2 that seems to be accurate.
- 4) Why is q positive?

- -

5) Draw a scaled ray diagram when p=100 cm in <u>Part 2</u>. Use the focal length calculated in #3. Measure q and h_i from your drawing! Scale 1 cm = 20 cm.

Don't forget to scale back!	
	q =
	hi =